Rapid induction of nucleoside-diphosphate kinase in HeLa S3 cells by human-type interferons

Kenzo Ohtsuki, Minehiko Yokoyama, Tohru Ikeuchi, Nakao Ishida, Kenji Sugita* and Kosaburo Satoh*

Department of Bacteriology, Tohoko University School of Medicine, Sendai 980 and *Shionogi Research Laboratories, Shionogi & Co., Osaka 553, Japan

Received 30 November 1985

Nucleoside-diphosphate (NDP)-kinase can be considered to be induced by human-type interferons (HuIFNs) rapidly, since an enzyme increase was detected within 2 h of incubation of HeLa S3 cells with HuIFNs, while incubation with heterologous mouse IFNs had no such effect. The enzyme increase induced by HuIFNs reached a plateau at 6 h after treatment. Actinomycin D (0.5 μ g/ml) significantly blocked the enzyme increase induced by HuIFNs in the cells. A possible biological role of the enzyme in the IFN-induced biochemical events is discussed.

Human type interferon Recombinant interferon Nucleoside-diphosphate kinase Enzyme induction (HeLa S3 cell)

1. INTRODUCTION

It has been clearly shown that treatment of sensitive cells with interferons (IFNs) results in the induction of a wide variety of new polypeptides [1-3]. Although the biological significance of 2',5'-oligo(A)synthetase [4,5] and of dsRNAdependent protein kinase [6-8] in the development of an antiviral state has been studied in detail [9]. the location and the physiological activity of most IFN-induced polypeptides remain to be elucidated. To study the biochemical mechanisms involved in the initiation of IFN-induced cell activation and cell differentiation, we recently established a new analytical method combining SDS-PAGE followed by autoradiography [10-12]. Under our established conditions, NDP-kinase (EC 2.7.4.6), which catalyzes a phosphate transfer in a wide variety of nucleoside 5'-di- and triphosphates [13], can be

Abbreviations: HuIFN, human-type interferon; NDP-kinase, nucleoside-diphosphate kinase; SDS-PAGE, SDS-polyacrylamide gel electrophoresis; DTT, dithiothreitol; PMSF, phenylmethylsulfonyl fluoride

selectively detected in cell extracts from various mammalian cells with $[\gamma^{-3^2}P]ATP$ in the presence of 3 mM Ca²⁺ [10]. It is possible to determine the ability of IFNs to induce NDP-kinase in various cells since the $[^{3^2}P]$ phosphoenzymes formed can be quantitatively determined by the nitrocellulose membrane method [10,11].

Here, we examined the ability of HuIFNs to induce NDP-kinase in HeLa S3 cells, in order to determine the physiological role of the enzyme in the initiation of IFN-induced cell activation and cell differentiation.

2. MATERIALS AND METHODS

2.1. Chemicals

 $[\gamma^{-32}P]$ ATP (20.0 Ci/mmol) was obtained from Amersham, nucleoside 5'-diphosphates (ADP, GDP, CDP and UDP), nucleoside 5'-triphosphates (ATP, GTP, CTP and UDP), DTT and PMSF from Sigma, Sephacryl S200 from Pharmacia and nitrocellulose membrane filter (type TM-1, 0.65 μ m) from Toyo Roshi (Tokyo).

2.2. Interferons

Human recombinant interferon γ (rHuIFN γ , spec. act. 10^6 units/mg protein), native human IFN γ (HuIFN γ , 10^6 units/mg protein), human IFN α (HuIFN α , 10^6 units/mg protein) and mouse interferons (rMuIFN γ and native MuIFN γ , 10^6 units/mg protein) were kindly supplied by Shionogi Research Laboratories (Osaka). HuIFN β , produced by the superinduction method on human diploid foreskin fibroblast cells, was prepared in our laboratories. This HuIFN β preparation had a specific activity of 10^6 units/mg protein. Anti-HuIFN γ antiserum was kindly donated by Dr M.P. Langford (University of Texas Medical Branch, Galveston, TX).

2.3. Treatment of HeLa S3 cells with IFNs

Confluent monolayers of HeLa S3 cells in 150 cm² flasks were treated at 37°C in a CO₂ incubator with various IFNs at the indicated titers (international unit as an antiviral activity) for the indicated periods. The IFN-treated and untreated cells were separately harvested by scraping with a rubber policeman, centrifuged and then washed twice with phosphate-buffered saline (PBS, pH 7.2). The cytoplasmic fractions from these cells were prepared as described below for determining NDP-kinase.

2.4. Crude NDP-kinase preparation

The cytoplasmic fractions from rHuIFN γ -treated and untreated HeLa S3 cells were prepared as follows: these cells (approx. 5×10^8 cells) were gently homogenized with a glass homogenizer in 0.5 ml of 20 mM Tris-HCl (pH 7.5) containing 1 mM DTT, 0.5 mM PMSF, 50 mM KCl and 10% glycerol, and then centrifuged for 20 min at 30000 rpm at 4°C. Under these conditions, over 95% of the total NDP-kinase in these cells was extracted. The obtained supernatants were separately dialyzed overnight at 4°C against the enzyme-extracting buffer and the dialysates were used as crude NDP-kinase preparations.

2.5. Assay for phosphoenzyme formation of NDP-kinase

As we previously reported [10,11], NDP-kinase in the crude cell extracts from IFN-treated and untreated HeLa S3 cells rapidly formed a phosphoenzyme, an enzyme-bound high-energy phosphate in-

termediate, when incubated with $[\gamma^{-32}P]ATP$ in the presence of divalent cations, such as 3 mM Ca²⁺ and 3 mM Mg²⁺. The [³²P]phosphoenzyme formed was quantitatively determined by the nitrocellulose membrane method [10-12].

2.6. SDS-PAGE and autoradiography

SDS-PAGE of the crude and partially purified NDP-kinases was performed according to a modification of the method of Laemmli [14]. The ³²P-labelled NDP-kinase polypeptides were detected by autoradiography after SDS-PAGE as in [10–12].

3. RESULTS AND DISCUSSION

To detect NDP-kinase polypeptides in the crude preparation from HeLa S3 cells, the preparation

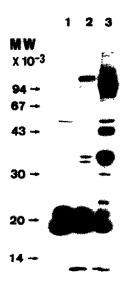


Fig. 1. Detection of NDP-kinase subunits as $[^{32}P]$ phosphorylated polypeptides by SDS-PAGE followed by autoradiography. The reaction mixture $(50 \,\mu\text{l})$ contained 20 mM Tris-HCl (pH 7.5), 2 mM DTT, 1 mM EDTA, 20 μ M $[\gamma^{-32}P]$ ATP (5000 cpm/pmol) and the crude cell extract (about 100 μ g protein) from HeLa S3 cells. The mixtures were separately incubated for 5 min in an ice bath in the presence of various divalent cations (3 mM Ca²⁺, 3 mM Mg²⁺ and 3 mM Mn²⁺) and protein phosphorylation was arrested by the addition of an SDS-PAGE sample buffer. After incubation for 30 min at 50°C, aliquots (about 20 μ g protein) were analyzed by SDS-PAGE followed by autoradiography. Lanes: 1, polypeptide phosphorylation in the presence of 3 mM

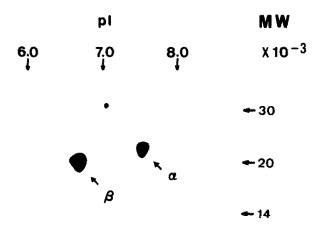


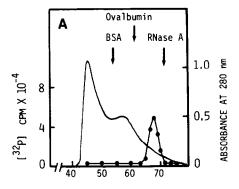
Fig. 2. Subunit analysis of the 32 P-labelled NDP-kinase by two-dimensional gel electrophoresis. After the crude cell extract (about 50 μ g protein) from HeLa S3 cells was incubated for 5 min in an ice bath with $[\gamma^{-32}$ P]ATP in the presence of 3 mM Ca²⁺, an aliquot (about 10 μ g protein) was directly analyzed by two-dimensional gel electrophoresis according to the modified method of O'Farrell et al. [15]. [32 P]Phosphorylated polypeptides were detected by autoradiography after gel electrophoresis.

was incubated for 5 min in an ice bath with $[\gamma^{-32}P]$ ATP in the presence of either 3 mM Ca²⁺, 3 mM Mg²⁺ or 3 mM Mn²⁺. The [³²P]phosphorylated polypeptides in the reaction mixtures were analyzed by SDS-PAGE followed by autoradiography. An autoradiogram showed two distinct polypeptides (M_r 21000 and 19000) to be highly phosphorylated in the presence of 3 mM Ca²⁺ or 3 mM Mg²⁺, whereas several polypeptides including those of M_r 21000 and 19000 were highly phosphorylated in the presence of 3 mM Mn²⁺ (fig. 1). The Ca²⁺ concentration was very important in this experiment, because 3 mM Ca²⁺ completely inhibited cellular protein phosphorylation by protein kinases without any reduction in the phosphorylation of these two polypeptides. In addition, two-dimensional gel electrophoresis followed by autoradiography confirmed the existence of two [32P]phosphorylated polypeptides $[M_r 21000 \text{ (pI 7.5)} \text{ and } M_r 19000 \text{ (pI 6.7)}]$ after phosphorylation under defined conditions (incubation for 5 min in an ice bath with $[\gamma^{-32}P]ATP$ in the presence of 3 mM Ca²⁺) (fig.2). It was con-

Table 1

Characterization of interferons as inducers of NDP-kinase in HeLa S3 cells

Treatment	NDP-kinase level (%)
	[³² P]Phosphate incorporation into the enzyme
Untreated control	100 (4909 cpm)
rHuIFN γ (30 U/ml)	203
(100 U/ml)	352
(300 U/ml)	443
(1000 U/ml)	477
(100 U/ml) + actinomycin D (0.5 μ g/ml)	165
HuIFN _γ (100 U/ml	437
(100 U/ml) + anti-HuIFNγ antiserum	121
HuIFN α (100 U/ml)	429
HuIFNβ (100 U/ml)	460
rMuIFN _γ (100 U/ml)	102
$MuIFN_{\gamma}$ (100 U/ml)	101


HeLa S3 cells (approx, 10^8 cells) were treated with the indicated IFNs at the indicated titers (IU/ml as antiviral activity) for 6 h at 37°C in a CO₂ incubator. The NDP-kinase level ([³²P]phosphate incorporation into the enzyme per μg protein) in the cell extracts from these IFN-treated and untreated cells was determined by the nitorcellulose membrane method [10] after incubation for 5 min in an ice bath with [γ -³²P]ATP in the presence of 3 mM Ca²⁺. Anti-HuIFN γ antiserum was preincubated with HuIFN γ (10³ U/ml) for 30 min at 37°C before exposure to the cells at a concentration that completely neutralized the antiviral activity

cluded that these two highly phosphorylated polypeptides (M_r 21000 and 19000) in the crude preparation from HeLa S3 cells are identical to NDP-kinase subunits because of the following experimental results: (i) similar phosphorylation of these two polypeptides occurred with the incubation of one of the $(\gamma^{-32}P)$ -labeled nucleoside 5'-triphosphates in the presence of 3 mM Ca²⁺ without strict base specificity; (ii) [32P]phosphates on the [32P]phosphorylated polypeptides were unstable under acidic conditions (1 N HCl) or on boiling (5 min); (iii) the molecular sizes (M_r 21 000 and 19000) of these highly phosphorylated polypeptides in the crude preparation exactly corresponded to the sizes determined for NDP-kinase subunits (M_r 21000 and 19000) [10]; and (iv) the partially purified phosphorylating polypeptide fraction (Sephacryl S200 fraction, fig.3) exhibited NDP-kinase activity (ADP formation from ATP) when the fraction was assayed by the coupled pyruvate kinase-lactate dehydrogenase assay [16] (not shown).

Since (i) NDP-kinase in the crude preparation from HeLa S3 cells preferentially formed a [32P]phosphoenzyme (reaction intermediate) when incubated with $[\gamma^{-32}P]ATP$ in the presence of 3 mM Ca²⁺ (figs 1 and 2); and (ii) the [³²Plphosphoenzymes formed were quantitatively determined by the nitrocellulose membrane method [10,11], it would be possible to compare the enzyme level between IFN-treated and untreated cells. We found that treatment of HeLa S3 cells with rHuIFN_{\gamma} (100 units/ml for 2 h at 37°C in a CO₂ incubator) results in a significant increase (about 2.3-times) in NDP-kinase compared with that in untreated cells. This increase was dose-dependent until 300 units/ ml rHuIFN γ (table 1). The enzyme level reached a plateau at 6 h after treatment. After 24 h of continuous exposure, treated cells could not be distinguished from untreated control cells on the basis of their NDP-kinase levels. Specific anti-HuIFN γ antiserum neutralized the ability of native HuIFN γ to increase the enzyme level in the cells. This enzyme increase was significantly blocked when actinomycin D $(0.5 \mu g/ml)$ was added simultaneously with rHuIFN γ (100 units/ml). $HuIFN\alpha$ as well as $HuIFN\beta$ and $HuIFN\gamma$ increased the enzyme to similar levels with the same unitages (100 units/ml) in the cells, whereas mouse recombinant IFN γ (MuIFN γ) did not affect enzyme induction. Taken together, these results show that HuIFNs are responsible for the increase in NDP-kinase level in HeLa S3 cells with cell species specificity, as has been shown in the induction of 2',5'-oligo(A)synthetase [4], dsRNA-dependent protein kinase [5,6] and Ca²⁺-dependent protein kinase (C-kinase) [17,18].

To determine the enzymatic properties of NDPkinases from rHuIFNy-treated and untreated HeLa S3 cells, the enzymes were partially purified from these cells by Sephacryl S200 gel filtration in the presence of 6 M urea, as previously reported with respect to purification of the enzyme from mouse NK cells [11]. As shown in fig.3, similar elution profiles of the proteins from these cells were observed, and the [32P]phosphate-incorporating activity with a single peak was detected in each fraction. The specific activity ([32P]phosphate incorporation into the enzyme subunits per µg protein) in the main peak fraction (fraction 68) of rHuIFN γ -treated cells was approx. 3-times higher than that determined in the same fraction of untreated cells. There were no significant differences, however, in the enzymes from rHuIFNy-treated and untreated cells in the following enzymatic properties: (i) requirements for divalent cations, such as Ca²⁺ and Mg²⁺ for their enzyme activity at the optimum pH of 7.5-8.0; (ii) kinetics of phosphoenzyme formation; (iii) inactivation kinetics of the enzymes at 60°C; and (iv) subunit structure $[\alpha_2\beta_2, \alpha$ -subunit (M_r 21000) and β -subunit $(M_{\rm r} 19000)$] (not shown).

The events leading to the increase in NDP-kinase occurred rapidly with HuIFNs, since it was detected within 2 h of incubation, but not with heterologous mouse IFNs (table 1). A similar enzyme increase was observed when mouse L cells were treated with mouse IFNs under similar conditions. The observations that (i) no significant difference in the enzymes from rHuIFNγ-treated and untreated cells was detected; and (ii) actinomycin D blocked the enzyme increase induced by HuIFNs suggest that IFNs may be responsible for the enhancement of enzyme synthesis at the transcriptional level. A similar IFN-induced membraneassociated polypeptide, which is correlated with the cessation of cell growth, has been recently reported as one of the polypeptides rapidly induced by IFNs [19]. The induction kinetics and the molecular size (M_r 18000-20000) of the IFN-

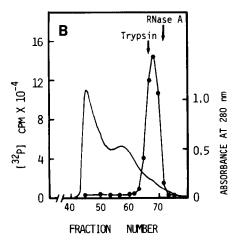


Fig.3. Partial purification of NDP-kinases from rHuIFNy-treated and untreated HeLa S3 cells by Sephacryl S200 gel filtration in the presence of 6 M urea. HeLa S3 cells (approx. 109 cells) were exposed to rHuIFN₂ (100 U/ml) for 6 h at 37°C in a CO₂ incubator. The crude NDP-kinase preparations from IFNtreated and untreated cells were prepared as described in section 2. The enzyme preparations (approx. 12 mg protein each) were passed separately through a Sephacryl S200 column (1.2×85 cm) previously equilibrated with 20 mM Tris-HCl (pH 7.5) containing 6 M urea and 2 mM DTT. Elution was carried out with the same buffer containing 6 M urea and 2 mM DTT, and 1.0 ml fractions were collected. The [32P]phosphate-incorporating activity of the indicated fractions was determined by the nitrocellulose membrane method. Arrows indicate the occurrence of bovine serum albumin (BSA, Mr 67 000), ovalbumin (M_r 45 000), trypsin (M_r 24 000) and RNase A (M_r 13 000). [32 P]Phosphate-incorporating activity (•) and absorbance at 280 nm (---). [A] Untreated control HeLa S3 cells, [B] rHuIFNγ-treated cells.

induced membrane-associated protein are similar to those shown here in the NDP-kinase subunits. However, the physiological activity of the IFN-induced membrane-associated protein and the mechanism by which IFNs inhibit cell growth are unclear at present.

Earlier reports concerning the physiological role of NDP-kinase indicated that (i) the enzyme acts as a key enzyme in supplying nucleoside 5'-triphosphates (NTPs) from nucleoside 5'-diphosphates (NDPs) for RNA synthesis (transcription) [10,13]; and (ii) the enzyme can initiate RNA synthesis in vitro [20,21]. Because of these physiological activities, it seems that the enzyme may play an important role in polypeptide induction by IFNs. Furthermore, IFN-induced polypeptides could be classified into two types: rapid-type inducing polypeptides (e.g. NDP-kinase, adenylate cyclase and membrane-associated 20 kDa protein), which are induced within 2 h of incubation of the cells with IFNs, and delayed-type inducing polypeptides (e.g. 2',5'-oligo(A)synthetase, dsRNA-dependent protein kinase and phosphodiesterase), which are detectable after exposure of the cells to IFNs for longer than 3 h at 37°C. This time period for the classification of IFN-induced polypeptides was determined on the basis of the inhibitory effect of actinomycin D on the induction of these polypeptides by IFNs [1-3, 17-19]. The rapid-type polypeptides are incompletely blocked by actinomycin D and are preexistent at low levels in untreated cells, whereas the delayed-type polypeptides are extremely sensitive to actinomycin D and are undetectable in untreated cells [1-3,19].

The observation that the induction kinetics of both NDP-kinase and C-kinase are similar [17,18] is interesting in that it suggests that NDP-kinase may be correlated with the initiation of cellular protein phosphorylation by the protein kinases in IFN-treated cells. This possibility is supported by the following indirect evidence: (i) NDP-kinase supplies phosphate donors (ATP and GTP) for the protein kinases; and (ii) C-kinase [22] is responsible for the metabolic alteration [17,18] and cell activation [23] through cellular protein phosphorylation by the kinases. Experiments to determine (i) the physiological role of NDP-kinase and (ii) the physiological correlation between NDP-kinase and C-kinase in the initiation mechanisms involved in cell activation and cell differentiation induced by IFNs are currently underway.

ACKNOWLEDGEMENTS

This work was supported in part by grants from the Ministry of Education, Science and Culture of Japan and the Naitoh Research Foundation (1984).

REFERENCES

- Gustafsson, Å., Sundström, S., Ny, T. and Lundgren, E. (1982) J. Immunol. 129, 1952-1959.
- [2] Wel, J., Estein, C.J., Epstein, L.B., Sedmak, J.J., Sabran, L. and Grossgerg, S.E. (1983) Nature 301, 437-439.
- [3] Guardini, M.A., Schoenberg, M.P., Naso, R.B., Martin, B.A., Gutterman, J.U. and Guevara, J. jr (1984) J. Interferon Res. 4, 67-79.
- [4] Kerr, I.M. and Brown, R.E. (1979) Proc. Natl. Acad. Sci. USA 75, 256-260.
- [5] Minks, M.A., Benvin, S., Maroney, P. and Baglioni,C. (1979) J. Biol. Chem. 254, 5058-5064.
- [6] Sen, G.C., Taira, H. and Lengeyl, P. (1978) J. Biol. Chem. 253, 5915-5920.
- [7] Ohtsuki, K. and Baron, S. (1979) J. Biochem. 85, 1475-1502.
- [8] Ohtsuki, K., Nakamura, M., Koike, T., Ishida, N. and Baron, S. (1980) Nature 287, 65-67.
- [9] Baglioni, C. and Nilson, T.W. (1983) in: Interferon 1983 (Gresser, I. ed.) pp. 23-42, Academic Press, New York.

- [10] Koyama, K., Yokoyama, M., Koike, T., Ohtsuki, K. and Ishida, N. (1984) J. Biochem. 95, 925-935.
- [11] Ohtsuki, K., Yokoyama, M., Ishii, F. and Ishida, N. (1985) Biochem. Int. 10, 13-21.
- [12] Ohtsuki, K., Ishii, F. and Yokoyama, M. (1985) Biochem. Int. 11, 719-727.
- [13] Parks, R.W. jr and Agarwal, R.P. (1973) in: The Enzymes (Boyer, P.D. ed.) pp. 307-333, Academic Press, New York.
- [14] Laemmli, U.K. (1970) Nature 227, 680-685.
- [15] O'Farrell, P.Z., Goodman, M.M. and O'Farrell, P.M. (1977) Cell 12, 1133-1142.
- [16] Mourad, N. and Parks, R.E. jr (1966) J. Biol. Chem. 241, 3838-3844.
- [17] Ohtsuki, K., Torres, B.A. and Johnson, H.M. (1982) Biochem. Biophys. Res. Commun. 104, 422-429.
- [18] Ohtsuki, K. and Baron, S. (1982) J. Biochem. 92, 967-970.
- [19] Knight, E. jr, Fahey, D. and Blomstrom, D. (1985)J. Interferon Res. 5, 305-313.
- [20] Testa, D. and Banerjee, A.K. (1979) J. Biol. Chem. 254, 2053-2058.
- [21] Reddy, G.P.U. and Pardee, A.B. (1980) Proc. Natl. Acad. Sci. USA 77, 3312-3316.
- [22] Nishizuka, Y. (1984) Nature 308, 693-697.
- [23] Hamilton, T.A., Becton, D.L., Somers, S.D., Gray, P.W. and Adams, D.O. (1985) J. Biol. Chem. 260, 1378-1381.